
Lecture 16

Lecturer:

Prof. Dr. T.Uranchimeg

Power Engineering School

M.CS201 “Programming language”

Agenda

 Opening a File

 Errors with open files

Writing and Reading File Data

 Formatted File Input

 Direct File Input and Output

2010/08/27 2M.CS201 "Programming language" -- Lecture 16

Opening a File

The process of creating a stream linked to a disk

file is called opening the file. When you open

a file, it becomes available for reading

(meaning that data is input from the file to the

program), writing (meaning that data from the

program is saved in the file), or both. When

you're done using the file, you must close it.

2010/08/27 3M.CS201 "Programming language" -- Lecture 16

Prototype

To open a file, you use the fopen() library function.

The prototype of fopen() is located in STDIO.H and

reads as follows:

FILE *fopen(const char *filename, const char

*mode);

This prototype tells you that fopen() returns a pointer

to type FILE, which is a structure declared in

STDIO.H.

2010/08/27 4M.CS201 "Programming language" -- Lecture 16

Fopen()

When you call fopen(), that function

creates an instance of the FILE structure

and returns a pointer to that structure.

You use this pointer in all subsequent

operations on the file. If fopen() fails, it

returns NULL.

2010/08/27 5M.CS201 "Programming language" -- Lecture 16

Values of mode for the fopen() function

2010/08/27 6M.CS201 "Programming language" -- Lecture 16

Values of mode for the fopen() function

2010/08/27 7M.CS201 "Programming language" -- Lecture 16

Mode argument

The default file mode is text. To open a

file in binary mode, you append a b to

the mode argument. Thus, a mode

argument of a would open a text-mode

file for appending, whereas ab would

open a binary-mode file for appending.

2010/08/27 8M.CS201 "Programming language" -- Lecture 16

Errors with open files

 Using an invalid filename.

 Trying to open a file on a disk that isn't ready

(the drive door isn't closed or the disk isn't

formatted, for example).

 Trying to open a file in a nonexistent

directory or on a nonexistent disk drive.

 Trying to open a nonexistent file in mode r.

2010/08/27 9M.CS201 "Programming language" -- Lecture 16

Using fopen() to open disk files in various modes

#include <stdlib.h>

#include <stdio.h>

main()

{

FILE *fp;

char filename[40], mode[4];
2010/08/27 10M.CS201 "Programming language" -- Lecture 16

Cont. 2

while (1)

{

printf("\nEnter a filename: ");

gets(filename);

printf("\nEnter a mode (max 3

characters): ");
2010/08/27 11M.CS201 "Programming language" -- Lecture 16

Cont. 3

gets(mode);

if ((fp = fopen(filename, mode)) !=

NULL)

{

printf("\nSuccessful opening %s

in mode %s.\n", filename, mode);

2010/08/27 12M.CS201 "Programming language" -- Lecture 16

Cont. 4

fclose(fp);

puts("Enter x to exit, any other

to continue.");

if ((getc(stdin)) == `x')

break;

else
2010/08/27 13M.CS201 "Programming language" -- Lecture 16

Cont. 5

continue;

}

else

{

fprintf(stderr, "\nError opening file

%s in mode %s.\n", filename, mode);

2010/08/27 14M.CS201 "Programming language" -- Lecture 16

Cont. 6

puts("Enter x to exit, any other to try again.");

if ((getc(stdin)) == `x')

break;

else

continue;

}

}

}

2010/08/27 15M.CS201 "Programming language" -- Lecture 16

Writing and Reading File Data

A program that uses a disk file can write

data to a file, read data from a file, or a

combination of the two. You can write

data to a disk file in three ways:

2010/08/27 16M.CS201 "Programming language" -- Lecture 16

1. Formatted output

You can use formatted output to save formatted data to

a file. You should use formatted output only with

text-mode files. The primary use of formatted output

is to create files containing text and numeric data to

be read by other programs such as spreadsheets or

databases. You rarely, if ever, use formatted output

to create a file to be read again by a C program.

2010/08/27 17M.CS201 "Programming language" -- Lecture 16

2. Character output

You can use character output to save single characters

or lines of characters to a file. Although technically

it's possible to use character output with binary-

mode files, it can be tricky. You should restrict

character-mode output to text files. The main use of

character output is to save text (but not numeric)

data in a form that can be read by C, as well as other

programs such as word processors.

2010/08/27 18M.CS201 "Programming language" -- Lecture 16

3. Direct output

You can use direct output to save the

contents of a section of memory directly

to a disk file. This method is for binary

files only. Direct output is the best way

to save data for later use by a C

program.

2010/08/27 19M.CS201 "Programming language" -- Lecture 16

Read data from file

When you want to read data from a file, you

have the same three options: formatted input,

character input, or direct input. The type of

input you use in a particular case depends

almost entirely on the nature of the file being

read. Generally, you will read data in the

same mode that it was saved in, but this is not

a requirement.
2010/08/27 20M.CS201 "Programming language" -- Lecture 16

Formatted File Input and Output

Formatted file input/output deals with text

and numeric data that is formatted in a

specific way. It is directly analogous to

formatted keyboard input and screen

output done with the printf() and scanf()

functions

2010/08/27 21M.CS201 "Programming language" -- Lecture 16

Formatted File Output

Formatted file output is done with the library function

fprintf(). The prototype of fprintf() is in the header

file STDIO.H, and it reads as follows:

int fprintf(FILE *fp, char *fmt, ...);

The first argument is a pointer to type FILE. To write

data to a particular disk file, you pass the pointer

that was returned when you opened the file with

fopen().

2010/08/27 22M.CS201 "Programming language" -- Lecture 16

Demonstrates the fprintf() function

#include <stdlib.h>

#include <stdio.h>

void clear_kb(void);

main()

{

FILE *fp;
2010/08/27 23M.CS201 "Programming language" -- Lecture 16

Cont. 2

float data[5];

int count;

char filename[20];

puts("Enter 5 floating-point numerical

values.");

for (count = 0; count < 5; count++)
2010/08/27 24M.CS201 "Programming language" -- Lecture 16

Cont. 3

scanf("%f", &data[count]);

clear_kb();

puts("Enter a name for the file.");

gets(filename);

if ((fp = fopen(filename, "w")) ==

NULL)
2010/08/27 25M.CS201 "Programming language" -- Lecture 16

Cont. 4

{

fprintf(stderr, "Error opening file

%s.", filename);

exit(1);

}

for (count = 0; count < 5; count++)
2010/08/27 26M.CS201 "Programming language" -- Lecture 16

Cont. 5

{

fprintf(fp, "\ndata[%d] = %f", count,

data[count]);

fprintf(stdout, "\ndata[%d] = %f",

count, data[count]);

}

2010/08/27 27M.CS201 "Programming language" -- Lecture 16

Cont. 6

fclose(fp);

printf("\n");

return(0);

}

void clear_kb(void)

{
2010/08/27 28M.CS201 "Programming language" -- Lecture 16

Cont. 7

char junk[80];

gets(junk);

}

2010/08/27 29M.CS201 "Programming language" -- Lecture 16

Formatted File Input

#include <stdlib.h>

#include <stdio.h>

void clear_kb(void);

main()

{

float f1, f2, f3, f4, f5;
2010/08/27 30M.CS201 "Programming language" -- Lecture 16

Cont. 2

FILE *fp;

if ((fp = fopen("INPUT.TXT", "r")) ==

NULL)

{

fprintf(stderr, "Error opening

file.\n");

2010/08/27 31M.CS201 "Programming language" -- Lecture 16

Cont. 3

exit(1);

}

fscanf(fp, "%f %f %f %f %f", &f1, &f2,

&f3, &f4, &f5);

printf("The values are %f, %f, %f, %f,

and %f\n.", f1, f2, f3, f4, f5);

2010/08/27 32M.CS201 "Programming language" -- Lecture 16

Cont. 4

fclose(fp);

return(0);

}

2010/08/27 33M.CS201 "Programming language" -- Lecture 16

Character Input and Output

There are three character input functions:

getc() and fgetc() for single characters,

and fgets() for lines.

two character output functions: putc() and

fputs().

2010/08/27 34M.CS201 "Programming language" -- Lecture 16

Direct File Input and Output

The fwrite() library function writes a block of data

from memory to a binary-mode file. Its prototype in

STDIO.H is

int fwrite(void *buf, int size, int count, FILE *fp);

The argument buf is a pointer to the region of memory

holding the data to be written to the file. The pointer

type is void; it can be a pointer to anything.

2010/08/27 35M.CS201 "Programming language" -- Lecture 16

The fread() Function

The fread() library function reads a block of data from

a binary-mode file into memory. Its prototype in

STDIO.H is

int fread(void *buf, int size, int count, FILE *fp);

The argument buf is a pointer to the region of memory

that receives the data read from the file. As with

fwrite(), the pointer type is void.

2010/08/27 36M.CS201 "Programming language" -- Lecture 16

Using fwrite() and fread() for direct file access

#include <stdlib.h>

#include <stdio.h>

#define SIZE 20

main()

{

int count, array1[SIZE], array2[SIZE];
2010/08/27 37M.CS201 "Programming language" -- Lecture 16

Example

FILE *fp;

for (count = 0; count < SIZE; count++)

array1[count] = 2 * count;

if ((fp = fopen("direct.txt", "wb")) ==

NULL)

{
2010/08/27 38M.CS201 "Programming language" -- Lecture 16

Example

fprintf(stderr, "Error opening file.");

exit(1);

}

if (fwrite(array1, sizeof(int), SIZE, fp)

!= SIZE)

{
2010/08/27 39M.CS201 "Programming language" -- Lecture 16

Example

fprintf(stderr, "Error writing to file.");

exit(1);

}

fclose(fp);

if ((fp = fopen("direct.txt", "rb")) ==

NULL)
2010/08/27 40M.CS201 "Programming language" -- Lecture 16

Example

{

fprintf(stderr, "Error opening file.");

exit(1);

}

if (fread(array2, sizeof(int), SIZE, fp) !=

SIZE)
2010/08/27 41M.CS201 "Programming language" -- Lecture 16

Example

{

fprintf(stderr, "Error reading file.");

exit(1);

}

fclose(fp);

for (count = 0; count < SIZE; count++)
2010/08/27 42M.CS201 "Programming language" -- Lecture 16

Example

printf("%d\t%d\n", array1[count],

array2[count]);

return(0);

}

2010/08/27 43M.CS201 "Programming language" -- Lecture 16

Detecting the End of a File

When reading from a text-mode file character-by-

character, you can look for the end-of-file character.

The symbolic constant EOF is defined in STDIO.H

as -1, a value never used by a "real" character. When

a character input function reads EOF from a text-

mode stream, you can be sure that you've reached

the end of the file.

2010/08/27 44M.CS201 "Programming language" -- Lecture 16

Example

#include <stdlib.h>

#include <stdio.h>

#define BUFSIZE 100

main()

{

char buf[BUFSIZE];
2010/08/27 45M.CS201 "Programming language" -- Lecture 16

Example

char filename[60];

FILE *fp;

puts("Enter name of text file to display: ");

gets(filename);

if ((fp = fopen(filename, "r")) == NULL)

{

2010/08/27 46M.CS201 "Programming language" -- Lecture 16

Example

fprintf(stderr, "Error opening file.");

exit(1);

}

while (!feof(fp))

{

fgets(buf, BUFSIZE, fp);
2010/08/27 47M.CS201 "Programming language" -- Lecture 16

Example

printf("%s",buf);

}

fclose(fp);

return(0);

}

2010/08/27 48M.CS201 "Programming language" -- Lecture 16

Deleting a File

To delete a file, you use the library

function remove(). Its prototype is in

STDIO.H, as follows:

int remove(const char *filename);

The variable *filename is a pointer to the

name of the file to be deleted.

2010/08/27 49M.CS201 "Programming language" -- Lecture 16

Renaming a File

The rename() function changes the name of an

existing disk file. The function prototype, in

STDIO.H, is as follows:

int rename(const char *oldname, const char

*newname);

The filenames pointed to by oldname and

newname follow the rules

2010/08/27 50M.CS201 "Programming language" -- Lecture 16

Summary

 Opening a File

 Errors with open files

Writing and Reading File Data

 Formatted File Input

 Direct File Input and Output

2010/08/27 51M.CS201 "Programming language" -- Lecture 16

Any questions?

2010/08/27 52M.CS201 "Programming language" -- Lecture 16

Thank you for

attention

2010/08/27 53M.CS201 "Programming language" -- Lecture 16

