
Software for

Engineer Design

Lecture 01

Lecture 01

Introduction

Subjects:

 Theoretical Foundation

 The Matlab Interface

 Basic functionality of Matlab

Keyword

Field, skill, package, simulation, image processing, differential equation.

Abstract

Matlab is a widely used tool in all Engineering fields. There is no doubt that knowing at least

the basics of Matlab is a valuable, if not essential skill to have. Matlab is a very versatile

software package that can be expanded by any interest group to match their special

computational needs. It is thus not only used for simple or complex arithmetic, but also in

image processing, statistical analysis, simulation of many kinds, differential equations, etc.

We begin by looking at some of the very basic functionality of Matlab, like variable

declarations, arithmetic, and vector and matrix data structures and manipulation. We then

apply this foundation to more complex problems to solve those problems and learn about

methods of displaying the solutions.

This lecture serves to build an understanding of the Matlab interface, basic mathematical

operations, and the fundamental data structures.

Lecture 01

1.1 - Theoretical Foundation

The Matlab Interface

(Figure 1.1) is divided into

3 windows: The Workspace

(upper left corner) lists all

defined variables and m-

files (discussed later); the

Command History (lower

left corner) lists the ordered

sequence of commands

issued in this session; and

the Command Window

(right side) is the main

source of input and output

of commands, variable

definitions, and errors.

Figure 1.1
Click image to enlarge, or click here to open

In the toolbar of the

interface, we can designate

a directory from which to

read and to which to write

m-files. It is recommended

to create a new directory

(e.g. matlab) in your

account (the H: drive in

case of the Gateway Lab),

which will host any m-files,

exercises, and assignments.

For simplicity, keep all

Matlab related files in this

directory.

Whenever starting Matlab,

change the Current

Directory to this directory

to access relevant files.

Figure 1.2
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_startup.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_current_directory.jpg

Lecture 01

Figure 1.3 shows a few

simple arithmetic

expressions that are

evaluated in the Command

Window: Exponentials are

typed in as x^y , square

roots as sqrt(x) . The

Workspace and Command

History Windows update as

expressions are evaluated in

the Command Window. Any

variable that appears in the

Workspace can be used.

ans denotes the variable for

the last evaluated answer.

Figure 1.3
Click image to enlarge, or click here to open

Variable are formed by

assigning letters or words to

numbers or expressions, as

shown in Figure 1.4. All

defined variables in the

Workspace can be used

throughout the session.

Figure 1.4
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_arithmetic.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_variable_declaration.jpg

Lecture 01

Using variables that haven't

been defined returns an

appropriate error.

Declarations must follow

the convention of

assignment where the left

side of an equal sign is

always a variable and the

right side an arbitrary

expression.

Figure 1.5
Click image to enlarge, or click here to open

Matlab handles variables by

their value as opposed to

symbolically. When a

variable has been assigned

to a value and is used in

another expression, the

variable acts as the value

rather than a reference to

the variable name. We can

observe this behavior in the

series of expressions in

Figure 1.6. Even though

c=a+b has been declared in

terms of variables a and b,

when changing the value of

a, c remains to be the sum

of the initial a and b.

Figure 1.6
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_variable_arithmetic.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_declaration_by_value.jpg

Lecture 01

The contents of the

Workspace can be cleared

by issuing the command

clear . This will remove

all previously defined

variables.

Figure 1.7
Click image to enlarge, or click here to open

The contents of all windows

can be cleared from the Edit

menu.

Figure 1.8
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_clear_workspace.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_clear_windows.jpg

Lecture 01

[x:z] defines a vector of

numbers starting at x and

ending at z, where each

element of the array is

incremented by 1. E.g.

[3:9] defines the vector

[3,4,5,6,7,8,9].

[x:y:z] defines a vector of

numbers starting at x and

ending at z, where each

element of the array is

incremented by y. E.g.

[10:2:20] defines the

vector [10,12,14,16,18,20].

Every definition explicitely

returns the defined quantity,

and each expression returns

a result. The output can be

suppressed by ending the

expression with a ;

(semicolon). E.g.

a=[1:1000000] returns a

vector of 1000000

elements, a quantity that we

do not necessarily want to

see see element by element.

The expression

a=[1:1000000]; will

merely define the variable

without returning unwanted

output.

Figure 1.9
Click image to enlarge, or click here to open

Figure 1.10 pictorially

shows the difference

between scalars and vectors:

a scalar is a single element,

while a vector is a series (or

a list) of elements (of

scalars).

In Figure 1.9 we have

declared a scalar s and a

vector t.

Figure 1.10

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_vector_declaration.jpg

Lecture 01

Having defined a vector and

a scalar, we can perform

arithmetic operations.

Adding (multiplying, etc.) a

vector by a scalar adds

(multiplies, etc.) each

element of the vector by the

scalar. The result of s * t

can be assigned to an output

variable u as in u = s * t

. Variable u then references

the resulting vector.

Figure 1.11
Click image to enlarge, or click here to open

Two same-sized vectors a

and b are added/subtracted

element-by-element using

the + and - operators, as is

done in matrix addition and

subtraction. (Vectors are

merely matrices with only

one row).

In order to multiply two

vectors element-by-

element, the operator * (or

/) must be preceded by a

period ., as shown in Figure

1.12.

Figure 1.12
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_vector_arithmetic.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_vector_arithmetic2.jpg

Lecture 01

In order to perform any

element-by-element

operation on two vectors,

their lengths must match,

otherwise Matlab returns an

error.

Figure 1.14 shows how two

differently sized vectors

cannot be combined

element-by-element,

because there exist

ambiguities as to how an

operation is defined

between a scalar and a

"nothing".

Figure 1.13
Click image to enlarge, or click here to open

Figure 1.14

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_vector_size_mismatch.jpg

Lecture 01

Besides using the range

notation, vectors can also be

defined by enumerating the

elements one by one

(Figure 1.15). Transposing

can be accomplished by

using a single quote (') after

the variable name, e.g. b' .

Two same size vector can

then be multiplied in

matrix-terms by issuing the

command a * b' .

Figure 1.16 pictorially

shows a transpose and a

double transpose operation.

Figure 1.15
Click image to enlarge, or click here to open

Figure 1.16

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_vector_transpose.jpg

Lecture 01

Elements in a vector can be

addressed individually by

enclosing the elements

index in parentheses after

the vector variable name,

e.g. b(3) . The vector's

elements' indices start at 1

and stop at the length of the

vector. Index 0 (zero) is not

used, even though it is

commonly done so in

programming languages.

The command length(b)

for any matrix b evaluates

to the number of elements

in vector b.

Figure 1.17
Click image to enlarge, or click here to open

A matrix is defined by rows

and columns. A row of

elements is delimited by

commas, e.g. 1,2,3 .

Columns are delimited by

semi-colons, e.g. 5;6;7 . A

matrix can thus be defined

using any of the vector

defining notations used

previously, e.g.

[1,2,3;4,5,6;7,8,9]

or

[[1:3];[4:6];[7:9]] .

Figure 1.19 pictorially

shows what are considered

rows and columns of a

matrix, indexing

conventions, and the

general form of indexing

into a matrix.

Figure 1.18
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_vector_index.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_matrix_declaration.jpg

Lecture 01

Figure 1.19

Matrices of same

dimensions can be added

and subtracted as is defined

in matrix arithmetic. In

multiplication, however, we

achieve different results

depending on whether we

multiply two matrices by

using a*b or a.*b , where

the latter is element-by-

element multiplication.

Figure 1.20
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_matrix_arithmetic.jpg

Lecture 01

Random numbers, vectors,

and matrices can be formed

using the function rand.

rand takes as arguments the

number of rows, and

number of columns:

rand(rows,cols) and returns

a matrix of that size with

random numbers ranging

from 0 to 1. The function

can easily be multiplied

and/or added to scalars in

order to produce random

numbers in any range, e.g. a

random number between 0

and 10: rand(1,1) * 10

, or a random number

between 10 and 100:

(rand(1,1) * 90) +

10 .

Figure 1.21
Click image to enlarge, or click here to open

Matrices and vectors can be

appended to form larger

matrices and vectors. Given

two similarly or differently

sized vectors a and b, a

vector c can be formed by

c=[a,b] . c is now as long

as a and b combined. The

same holds for matrices. A

3x3 matrix a can be

combined with a 3x5 matrix

b by [a,b] but not by

[a;b] , while a 3x3 matrix

a can be combined with a

5x3 matrix b by [a;b] but

not by [a,b] . Depending

on which way matrices are

appended, one of the

dimensions (rows or

columns) must match.

Figure 1.22
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_random.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_matrix_assembly.jpg

Lecture 01

Functions ceil(x) and

floor(x) round decimal

numbers (doubles) up and

down to the next integer,

respectively. This operation

can be performed on

scalars, vectors, and

matrices.

Figure 1.23
Click image to enlarge, or click here to open

Elements in a matrix can be

accessed by rows and

columns: A(r,c), where A is

a matrix, r is a row, and c is

a column.

Figure 1.24
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_ceil_floor.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_matrix_index.jpg

Lecture 01

Rows and columns can also

be accessed. To access a

row in matrix A, a colon (:)

is substituted for the

column, and vice versa:

row_r = A(r,:) ,

column_c = A(:,c) .

The concept of indexing

into a matrix by row and

column, only row, and only

column is pictorially

described in Figure 1.26.

Figure 1.25
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_matrix_index2.jpg

Lecture 01

Figure 1.26

Lecture 01

It is also possible to extract

portions of a matrix by

using ranges such as [1,2]

or [1:3] as indices, as

shown in Figure 1.27.

The concept of extracting

sub-matrices from matrices

is shown in Figure 1.28.

Figure 1.27
Click image to enlarge, or click here to open

Figure 1.28

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_matrix_submatrix.jpg

Lecture 01

Not only can we extract a

sub-matrix, but we can also

replace portions of a matrix.

The same form of indexing

is used, as shown in Figure

1.29.

The concept of replacing

sub-matrices is pictorially

described in Figure 1.30.

Figure 1.29
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_matrix_replace.jpg

Lecture 01

Figure 1.30

Lecture 01

To get quick help on any

Matlab function, we type

help function where

function is the name of the

function. help rand , for

example, gives detailed

help on function rand.

Figure 1.31
Click image to enlarge, or click here to open

To save a collection of

expressions, for example

for in-class exercises and

homework assignments,

you will need to use m-

files. M-files are no more

than simple text files that

can be executed from

within Matlab to reproduce

the statements in the m-file.

To create a new m-file, go

to File -> New -> M-file, as

shown in Figure 1.32.

Figure 1.32
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_help.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_mfile_new.jpg

Lecture 01

We can now enter a number

of statements, one statement

per line. In a later lecture,

we will see how to create

functions using m-files.

Figure 1.33
Click image to enlarge, or click here to open

Save the m-file in the

matlab directory which you

have earlier chosen as the

Current Directory. Make

sure that the extension of

this file is .m, i.e. make sure

that the file ends with .m

Figure 1.34
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_mfile.jpg
http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_mfile_save.jpg

Lecture 01

You can now execute the

statements in the m-file by

typing in the name of the

m-file in the Command

Window. Make sure to omit

the .m extension.

Figure 1.35
Click image to enlarge, or click here to open

http://www.aquaphoenix.com/lectures/matlab1/images-large/matlab_mfile_execute.jpg

Lecture 01

Links

http://202.5.195.17/emust/web/

http://uranchimeg.com/Education/?page_id=1534

http://www.aquaphoenix.com/lectures/matlab1/page3.html

http://202.5.195.17/emust/web/
http://uranchimeg.com/Education/?page_id=1534
http://www.aquaphoenix.com/lectures/matlab1/page3.html

