
M.EC203* -- OOP (C++) -- Lecture 08

Object oriented programming

C++

T.Uranchimeg
Prof. Dr.

Email

uranchimeg@must.edu.mn

Power Engineering School

http://uranchimeg.com

http://www.ukoln.ac.uk/web-focus/events/workshops/trieste-2005/talk--1b/

M.EC203* -- OOP (C++) -- Lecture 08 2

Subjects

• Dynamic memory

• new and delete

• structure

• type of structures

• union

• enum

M.EC203* -- OOP (C++) -- Lecture 08 3

Dynamic memory

Until now, in our programs, we

have only had as much memory

as we have requested in

declarations of variables, arrays

and other objects that we

included, having the size of all of

them fixed before the execution
of the program.

M.EC203* -- OOP (C++) -- Lecture 08 4

Operators new and new[]

In order to request dynamic

memory, the operator new exists.

new is followed by a data type and

optionally the number of

elements required within

brackets []. It returns a pointer to

the beginning of the new block of
assigned memory.

M.EC203* -- OOP (C++) -- Lecture 08 5

The prototype

pointer = new type

or

pointer = new type [elements]

The first expression is used to assign memory

to contain one single element of type. The

second one is used to assign a block (an

array) of elements of type.

M.EC203* -- OOP (C++) -- Lecture 08 6

The example

int * bobby;

bobby = new int [5];

in this case, the operating system

has assigned space for 5 elements

of type int in a heap and it has

returned a pointer to its beginning
that has been assigned to bobby.

M.EC203* -- OOP (C++) -- Lecture 08 7

Operator delete

Since the necessity of dynamic

memory is usually limited to

concrete moments within a

program, once it is no longer

needed it should be freed so that

it becomes available for future
requests of dynamic memory.

M.EC203* -- OOP (C++) -- Lecture 08 8

delete

The operator delete exists for

this purpose, whose form is:

delete pointer;

or

delete [] pointer;

M.EC203* -- OOP (C++) -- Lecture 08 9

The explain

The first expression should be

used to delete memory

alloccated for a single element,

and the second one for

memory allocated for multiple
elements (arrays).

M.EC203* -- OOP (C++) -- Lecture 08 10

The program 9-1

#include <iostream.h>

#include <stdlib.h>

int main ()

{

char input [100];

int i,n;

long * l;

M.EC203* -- OOP (C++) -- Lecture 08 11

The program 9-1

cout << "How many numbers

do you want to type in? ";

cin.getline (input,100);

i=atoi (input);

l= new long[i];

if (l == NULL) exit (1);

for (n=0; n<i; n++)

M.EC203* -- OOP (C++) -- Lecture 08 12

The program 9-1

{

cout << "Enter number: ";

cin.getline (input,100);

l[n]=atol (input);

}

M.EC203* -- OOP (C++) -- Lecture 08 13

The program 9-1

cout << "You have entered: ";

for (n=0; n<i; n++)

cout << l[n] << ", ";

delete[] l;

return 0;

}

M.EC203* -- OOP (C++) -- Lecture 08 14

Data structures

A data structure is a set of

diverse types of data that

may have different lengths

grouped together under a
unique declaration

M.EC203* -- OOP (C++) -- Lecture 08 15

The prototype

struct model_name {

type1 element1;

type2 element2;

type3 element3;

. .

} object_name;

M.EC203* -- OOP (C++) -- Lecture 08 16

The example

struct products {

char name [30];

float price;

} ;

products apple;

products orange, melon;

M.EC203* -- OOP (C++) -- Lecture 08 17

It is same

struct products {

char name [30];

float price;

} apple, orange, melon;

M.EC203* -- OOP (C++) -- Lecture 08 18

Using structure

Once we have declared our three

objects of a determined structure

model (apple, orange and melon) we

can operate with the fields that

form them. To do that we have to

use a point (.) inserted between

the object name and the field
name.

M.EC203* -- OOP (C++) -- Lecture 08 19

The example

M.EC203* -- OOP (C++) -- Lecture 08 20

The program 9-2

M.EC203* -- OOP (C++) -- Lecture 08 21

The program 9-2

M.EC203* -- OOP (C++) -- Lecture 08 22

Pointers to structures

Like any other type, structures can be

pointed by pointers. The rules are

the same as for any fundamental

data type: The pointer must be

declared as a pointer to the

structure:

M.EC203* -- OOP (C++) -- Lecture 08 23

The prototype

M.EC203* -- OOP (C++) -- Lecture 08 24

The example

Here amovie is an object of struct type

movies_t and pmovie is a pointer to point to

objects of struct type movies_t. So, the

following, as with fundamental types,

would also be valid:

pmovie = &amovie;

M.EC203* -- OOP (C++) -- Lecture 08 25

The program 9-3

M.EC203* -- OOP (C++) -- Lecture 08 26

The program 9-3

M.EC203* -- OOP (C++) -- Lecture 08 27

The program 9-3

M.EC203* -- OOP (C++) -- Lecture 08 28

The operator ->

The previous code includes an

important introduction: operator ->.

This is a reference operator that is

used exclusively with pointers to

structures and pointers to classes. It

allows us not to have to use

parenthesis on each reference to a
structure member

M.EC203* -- OOP (C++) -- Lecture 08 29

The example

In the example we used:

pmovie->title

that could be translated to:

M.EC203* -- OOP (C++) -- Lecture 08 30

The explain

both expressions pmovie->title

and (*pmovie).title are valid

and mean that we are

evaluating the element title

of the structure pointed by
pmovie.

M.EC203* -- OOP (C++) -- Lecture 08 31

The distinguish

You must distinguish it clearly

from:

*pmovie.title

that is equivalent to

*(pmovie.title)

M.EC203* -- OOP (C++) -- Lecture 08 32

The table

M.EC203* -- OOP (C++) -- Lecture 08 33

Nesting structures

Structures can also be

nested so that a valid

element of a structure can

also be another structure.

M.EC203* -- OOP (C++) -- Lecture 08 34

The example

M.EC203* -- OOP (C++) -- Lecture 08 35

Using nested structures

Therefore, after the

previous declaration we

could use the following

expressions:

M.EC203* -- OOP (C++) -- Lecture 08 36

Using nested structures

M.EC203* -- OOP (C++) -- Lecture 08 37

User defined data types

We have already seen a data type that

is defined by the user

(programmer): the structures. But

in addition to these there are other

kinds of user defined data types:

M.EC203* -- OOP (C++) -- Lecture 08 38

Definition of own types (typedef)

C++ allows us to define our own types based on

other existing data types. In order to do that

we shall use keyword typedef, whose form is:

typedef existing_type new_type_name ;

where existing_type is a C++ fundamental or any

other defined type and new_type_name is the name

that the new type we are going to define will
receive.

M.EC203* -- OOP (C++) -- Lecture 08 39

The example

typedef char C;

typedef unsigned int WORD;

typedef char * string_t;

typedef char field [50];

M.EC203* -- OOP (C++) -- Lecture 08 40

The Unions

Unions allow a portion of memory to be

accessed as different data types, since

all of them are in fact the same location

in memory. Its declaration and use is

similar to the one of structures but its

functionality is totally different:

M.EC203* -- OOP (C++) -- Lecture 08 41

The Union example

M.EC203* -- OOP (C++) -- Lecture 08 42

The explain

All the elements of the

union declaration occupy

the same space of memory.

Its size is the one of the

greatest element of the
declaration.

M.EC203* -- OOP (C++) -- Lecture 08 43

The example

M.EC203* -- OOP (C++) -- Lecture 08 44

The explain

each one of a different data type. Since all of

them are referring to a same location in

memory, the modification of one of the

elements will afect the value of all of them.

One of the uses a union may have is to unite an

elementary type with an array or structures of
smaller elements.

M.EC203* -- OOP (C++) -- Lecture 08 45

The continue

defines three names

that allow us to access

the same group of 4

bytes: mix.l, mix.s and

mix.c and which we can

use according to how

we want to access it, as

long, short or char

respectively.

M.EC203* -- OOP (C++) -- Lecture 08 46

The continue

I have mixed types, arrays and

structures in the union so that

you can see the different ways
that we can access the data:

M.EC203* -- OOP (C++) -- Lecture 08 47

Anonymous unions

In C++ we have the option that unions

be anonymous. If we include a union

in a structure without any object

name (the one that goes after the

curly brackets { }) the union will be

anonymous and we will be able to

access the elements directly by its
name.

M.EC203* -- OOP (C++) -- Lecture 08 48

The compare

M.EC203* -- OOP (C++) -- Lecture 08 49

The explain

The only difference between the two pieces of

code is that in the first one we gave a name to

the union (price) and in the second we did

not. The difference is when accessing

members dollars and yens of an object. In

the first case it would be:

M.EC203* -- OOP (C++) -- Lecture 08 50

The continue

M.EC203* -- OOP (C++) -- Lecture 08 51

Enumerations (enum)

Enumerations serve to create

data types to contain

something different that is not

limited to either numerical or

character constants nor to the

constants true and false

M.EC203* -- OOP (C++) -- Lecture 08 52

The example

M.EC203* -- OOP (C++) -- Lecture 08 53

The example

enum colors_t {black, blue,

green, cyan, red, purple,

yellow, white};

M.EC203* -- OOP (C++) -- Lecture 08 54

The valid expression

colors_t mycolor;

mycolor = blue;

if (mycolor == green)

mycolor = red;

M.EC203* -- OOP (C++) -- Lecture 08 55

Have you questions?

M.EC203* -- OOP (C++) -- Lecture 08 56

Summary

• Dynamic memory

• new and delete

• structure

• type of structures

• union

• enum

M.EC203* -- OOP (C++) -- Lecture 08 57

End of…

Thank you for

ATTENTION

