
M.EC203* -- OOP (C++) -- Lecture 09

Object oriented programming

C++

T.Uranchimeg
Prof. Dr.

Email

uranchimeg@must.edu.mn

Power Engineering School

http://uranchimeg.com

http://www.ukoln.ac.uk/web-focus/events/workshops/trieste-2005/talk--1b/

M.EC203* -- OOP (C++) -- Lecture 09 2

Subjects

• Class and Object

• Declare a class

• Constructors

• Destructors

M.EC203* -- OOP (C++) -- Lecture 09 3

A class

A class is a logical method to

organize data and functions in the

same structure. They are declared

using keyword class, whose

functionality is similar to that of

the C keyword struct, but with the

possibility of including functions

as members, instead of only data.

M.EC203* -- OOP (C++) -- Lecture 09 4

Its form

M.EC203* -- OOP (C++) -- Lecture 09 5

Explain

where class_name is a name for the class

(user defined type) and the optional field

object_name is one, or several, valid object

identifiers. The body of the declaration can

contain members, that can be either data or

function declarations, and optionally

permission labels, that can be any of these

three keywords: private:, public: or

protected:.

M.EC203* -- OOP (C++) -- Lecture 09 6

Members

• private members of a class are

accessible only from other

members of their same class or

from their "friend" classes.

• protected members are accessible

from members of their same class

and friend classes, and also from

members of their derived classes.

M.EC203* -- OOP (C++) -- Lecture 09 7

Members

• Finally, public members are accessible

from anywhere the class is visible.

If we declare members of a class before

including any permission label, the

members are considered private, since it is

the default permission that the members of

a class declared with the class keyword

acquire.

M.EC203* -- OOP (C++) -- Lecture 09 8

For example

M.EC203* -- OOP (C++) -- Lecture 09 9

Explain

Declares class CRectangle and an

object called rect of this class (type).

This class contains four members: two

variables of type int (x and y) in the

private section (because private is the

default permission) and two functions

in the public section: set_values() and

area(), of which we have only

included the prototype.

M.EC203* -- OOP (C++) -- Lecture 09 10

The point

On successive instructions in the body of the

program we can refer to any of the public

members of the object rect as if they were

normal functions or variables, just by

putting the object's name followed by a

point and then the class member

M.EC203* -- OOP (C++) -- Lecture 09 11

The program 12-1

M.EC203* -- OOP (C++) -- Lecture 09 12

The program 12-1

M.EC203* -- OOP (C++) -- Lecture 09 13

The operator ::

The new thing in this code is the operator :: of

scope included in the definition of set_values().

It is used to declare a member of a class outside

it. Notice that we have defined the behavior of

function area() within the definition of the

CRectangle class - given its extreme simplicity.

Whereas set_values() has only its protype

declared within the class but its definition is

outside. In this outside declaration we must use

the operator of scope ::.

M.EC203* -- OOP (C++) -- Lecture 09 14

Constructors and destructors

In order to avoid that, a class can include a

special function: a constructor, which can be

declared by naming a member function with

the same name as the class. This constructor

function will be called automatically when a

new instance of the class is created (when

declaring a new object or allocating an object

of that class) and only then.

M.EC203* -- OOP (C++) -- Lecture 09 15

The program 12-2

M.EC203* -- OOP (C++) -- Lecture 09 16

The program 12-2

M.EC203* -- OOP (C++) -- Lecture 09 17

The Destructor

The Destructor fulfills the opposite

functionality. It is automatically called

when an object is released from the

memory, either because its scope of

existence has finished or because it is

an object dynamically assigned and it

is released using operator delete.

M.EC203* -- OOP (C++) -- Lecture 09 18

A tilde (~)

The destructor must have the same

name as the class with a tilde (~) as

prefix and it must return no value.

The use of destructors is specially

suitable when an object assigns

dynamic memory during its life and at

the moment of being destroyed we

want to release the memory that it has

used.

M.EC203* -- OOP (C++) -- Lecture 09 19

The program 12-3

M.EC203* -- OOP (C++) -- Lecture 09 20

The program 12-3

M.EC203* -- OOP (C++) -- Lecture 09 21

The program 12-3

M.EC203* -- OOP (C++) -- Lecture 09 22

Overloading Constructors

In fact, in the cases where we

declare a class and we do not

specify any constructor the

compiler automatically assumes

two overloaded constructors

("default constructor" and "copy

constructor")

M.EC203* -- OOP (C++) -- Lecture 09 23

Overloading Constructors

with no constructors, the compiler

automatically assumes that it has

the following constructor member

functions:

M.EC203* -- OOP (C++) -- Lecture 09 24

Empty constructor

It is a constructor with no

parameters defined as nop (empty

block of instructions). It does

nothing.

M.EC203* -- OOP (C++) -- Lecture 09 25

Copy constructor

It is a constructor with only one parameter of

its same type that assigns to every nonstatic

class member variable of the object a copy of

the passed object.

M.EC203* -- OOP (C++) -- Lecture 09 26

It is important

It is important to realize that both

default constructors: the empty

construction and the copy constructor

exist only if no other constructor is

explicitly declared. In case that any

constructor with any number of

parameters is declared, none of these

two default constructors will exist.

M.EC203* -- OOP (C++) -- Lecture 09 27

Pointers to classes

It is perfectly valid to create pointers

pointing to classes, in order to do that

we must simply consider that once

declared, the class becomes a valid type,

so use the class name as the type for the

pointer.

CRectangle * prect;

M.EC203* -- OOP (C++) -- Lecture 09 28

For example

M.EC203* -- OOP (C++) -- Lecture 09 29

For example

M.EC203* -- OOP (C++) -- Lecture 09 30

For example

Next you have a summary on

how can you read some

pointer and class operators

(*, &, ., ->, []) that appear

in the previous example:

M.EC203* -- OOP (C++) -- Lecture 09 31

For example

M.EC203* -- OOP (C++) -- Lecture 09 32

Have you questions?

M.EC203* -- OOP (C++) -- Lecture 09 33

Summary

• Class and Object

• Declare a class

• Constructors

• Destructors

M.EC203* -- OOP (C++) -- Lecture 09 34

End of…

Thank you for

ATTENTION

