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Subjects

• Class and Object 

• Declare a class

• Constructors

• Destructors 
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A class

A class is a logical method to

organize data and functions in the

same structure. They are declared

using keyword class, whose

functionality is similar to that of

the C keyword struct, but with the

possibility of including functions

as members, instead of only data.



M.EC203*       -- OOP (C++)       -- Lecture 09 4

Its form
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Explain

where class_name is a name for the class

(user defined type) and the optional field

object_name is one, or several, valid object

identifiers. The body of the declaration can

contain members, that can be either data or

function declarations, and optionally

permission labels, that can be any of these

three keywords: private:, public: or

protected:.
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Members 

• private members of a class are

accessible only from other

members of their same class or

from their "friend" classes.

• protected members are accessible

from members of their same class

and friend classes, and also from

members of their derived classes.
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Members 

• Finally, public members are accessible 

from anywhere the class is visible. 

If we declare members of a class before

including any permission label, the

members are considered private, since it is

the default permission that the members of

a class declared with the class keyword

acquire.
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For example
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Explain

Declares class CRectangle and an

object called rect of this class (type).

This class contains four members: two

variables of type int (x and y) in the

private section (because private is the

default permission) and two functions

in the public section: set_values() and

area(), of which we have only

included the prototype.
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The point

On successive instructions in the body of the

program we can refer to any of the public

members of the object rect as if they were

normal functions or variables, just by

putting the object's name followed by a

point and then the class member
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The program 12-1
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The program 12-1
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The  operator ::

The new thing in this code is the operator :: of

scope included in the definition of set_values().

It is used to declare a member of a class outside

it. Notice that we have defined the behavior of

function area() within the definition of the

CRectangle class - given its extreme simplicity.

Whereas set_values() has only its protype

declared within the class but its definition is

outside. In this outside declaration we must use

the operator of scope ::.
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Constructors and destructors

In order to avoid that, a class can include a

special function: a constructor, which can be

declared by naming a member function with

the same name as the class. This constructor

function will be called automatically when a

new instance of the class is created (when

declaring a new object or allocating an object

of that class) and only then.
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The program 12-2
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The program 12-2
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The Destructor

The Destructor fulfills the opposite

functionality. It is automatically called

when an object is released from the

memory, either because its scope of

existence has finished or because it is

an object dynamically assigned and it

is released using operator delete.
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A tilde (~)

The destructor must have the same

name as the class with a tilde (~) as

prefix and it must return no value.

The use of destructors is specially

suitable when an object assigns

dynamic memory during its life and at

the moment of being destroyed we

want to release the memory that it has

used.
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The program 12-3
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The program 12-3
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The program 12-3
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Overloading Constructors

In fact, in the cases where we

declare a class and we do not

specify any constructor the

compiler automatically assumes

two overloaded constructors

("default constructor" and "copy

constructor")
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Overloading Constructors

with no constructors, the compiler

automatically assumes that it has

the following constructor member

functions:
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Empty constructor

It is a constructor with no

parameters defined as nop (empty

block of instructions). It does

nothing.
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Copy constructor

It is a constructor with only one parameter of

its same type that assigns to every nonstatic

class member variable of the object a copy of

the passed object.
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It is important

It is important to realize that both

default constructors: the empty

construction and the copy constructor

exist only if no other constructor is

explicitly declared. In case that any

constructor with any number of

parameters is declared, none of these

two default constructors will exist.
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Pointers to classes

It is perfectly valid to create pointers

pointing to classes, in order to do that

we must simply consider that once

declared, the class becomes a valid type,

so use the class name as the type for the

pointer.

CRectangle * prect;
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For example
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For example
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For example

Next you have a summary on 

how can you read some 

pointer and class operators 

(*, &, ., ->, [ ]) that appear 

in the previous example: 
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For example
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Have you questions?
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Summary

• Class and Object 

• Declare a class

• Constructors

• Destructors
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End of…

Thank you for

ATTENTION


