
M.EC203* -- OOP (C++) -- Lecture 14

Object oriented programming

with C++

T.Uranchimeg
Prof. Dr.

Email

uranchimeg@must.edu.mn

Power Engineering School

http://uranchimeg.com/

http://www.ukoln.ac.uk/web-focus/events/workshops/trieste-2005/talk--1b/

M.EC203* -- OOP (C++) -- Lecture 14 2

Subjects

• Preprocessor directives

• #define

• #undef

• #ifdef, #ifndef, #if, #endif,

#else and #elif

• Input/Output with files

M.EC203* -- OOP (C++) -- Lecture 14 3

Preprocessor directives

• Preprocessor directives are orders that we

include within the code of our programs that are

not instructions for the program itself but for the

preprocessor. The preprocessor is executed

automatically by the compiler when we compile

a program in C++ and is in charge of making the

first verifications and digestions of the program's

code.

• All these directives must be specified in a single

line of code and they do not have to include an

ending semicolon ;.

M.EC203* -- OOP (C++) -- Lecture 14 4

#define

• At the beginning of this tutorial

we have already spoken about a

preprocessor directive: #define,

that serves to generate what we

called defined constantants or

macros and whose form is the

following:

• #define name value

M.EC203* -- OOP (C++) -- Lecture 14 5

Continue

• Its function is to define a macro

called name that whenever it is

found in some point of the code is

replaced by value. For example:

• #define MAX_WIDTH 100

char str1[MAX_WIDTH];

char str2[MAX_WIDTH];

M.EC203* -- OOP (C++) -- Lecture 14 6

Continue

• It defines two strings to store up to

100 characters.

• #define can also be used to generate

macro functions:

• #define getmax(a,b) a>b?a:b

int x=5, y;

y = getmax(x,2);

• after the execution of this code y

would contain 5.

M.EC203* -- OOP (C++) -- Lecture 14 7

#undef

• #undef fulfills the inverse functionality of

#define. It eliminates from the list of

defined constants the one that has the name

passed as a parameter to #undef:

• #define MAX_WIDTH 100

char str1[MAX_WIDTH];

#undef MAX_WIDTH

#define MAX_WIDTH 200

char str2[MAX_WIDTH];

M.EC203* -- OOP (C++) -- Lecture 14 8

#ifdef, #ifndef, #if, #endif, #else and #elif

• These directives allow to discard part of

the code of a program if a certain condition

is not fulfilled.

• #ifdef allows that a section of a program is

compiled only if the defined constant that

is specified as the parameter has been

defined, independently of its value. Its

operation is:

• #ifdef name

// code here

#endif

M.EC203* -- OOP (C++) -- Lecture 14 9

Example

• #ifdef MAX_WIDTH

char str[MAX_WIDTH];

#endif

• In this case, the line char

str[MAX_WIDTH]; is only considered

by the compiler if the defined constant

MAX_WIDTH has been previously

defined, independently of its value. If it

has not been defined, that line will not be

included in the program.

M.EC203* -- OOP (C++) -- Lecture 14 10

Continue

• #ifndef serves for the opposite: the

code between the #ifndef directive

and the #endif directive is only

compiled if the constant name that is

specified has not been defined

previously. For example:

• #ifndef MAX_WIDTH

#define MAX_WIDTH 100

#endif

char str[MAX_WIDTH];

M.EC203* -- OOP (C++) -- Lecture 14 11

Continue

• In this case, if when arriving at

this piece of code the defined

constant MAX_WIDTH has not

yet been defined it would be

defined with a value of 100. If it

already existed it would maintain

the value that it had (because the

#define statement won't be

executed).

M.EC203* -- OOP (C++) -- Lecture 14 12

Continue

The #if, #else and #elif (elif = else

if) directives serve so that the

portion of code that follows is

compiled only if the specified

condition is met. The condition

can only serve to evaluate

constant expressions.

M.EC203* -- OOP (C++) -- Lecture 14 13

Example
• #if MAX_WIDTH>200

#undef MAX_WIDTH

#define MAX_WIDTH 200

#elsif MAX_WIDTH<50

#undef MAX_WIDTH

#define MAX_WIDTH 50

#else

#undef MAX_WIDTH

#define MAX_WIDTH 100

#endif

char str[MAX_WIDTH];

M.EC203* -- OOP (C++) -- Lecture 14 14

#line

• When we compile a program and errors happen

during the compiling process, the compiler

shows the error that happened preceded by the

name of the file and the line within the file where

it has taken place.

• The #line directive allows us to control both

things, the line numbers within the code files as

well as the file name that we want to appear

when an error takes place. Its form is the

following one:

• #line number "filename"

M.EC203* -- OOP (C++) -- Lecture 14 15

Continue

• Where number is the new line number that will be

assigned to the next code line. The line number of

successive lines will be increased one by one from

this.

• filename is an optional parameter that serves to

replace the file name that will be shown in case of

error from this directive until another one changes it

again or the end of the file is reached. For example:

• #line 1 "assigning variable"

int a?;

• This code will generate an error that will be shown

as error in file "assigning variable", line 1.

M.EC203* -- OOP (C++) -- Lecture 14 16

#error

• This directive aborts the compilation

process when it is found returning the error

that is specified as the parameter:

• #ifndef __cplusplus

#error A C++ compiler is required

#endif

• This example aborts the compilation

process if the defined constant

__cplusplus is not defined.

M.EC203* -- OOP (C++) -- Lecture 14 17

#include

• This directive has also been used

assiduously in other sections of this

tutorial. When the preprocessor finds

an #include directive it replaces it by

the whole content of the specified file.

There are two ways to specify a file to

be included:

• #include "file"

#include <file>

M.EC203* -- OOP (C++) -- Lecture 14 18

Continue

• The only difference between both expressions is

the directories in which the compiler is going to

look for the file. In the first case where the file is

specified between quotes, the file is looked for in

the same directory that includes the file

containing the directive. In case that it is not

there, the compiler looks for the file in the

default directories where it is configured to look

for the standard header files.

• If the file name is enclosed between angle-

brackets <> the file is looked for directly where

the compiler is configured to look for the

standard header files.

M.EC203* -- OOP (C++) -- Lecture 14 19

#pragma

• This directive is used to specify

diverse options to the compiler.

These options are specific for the

platform and the compiler you

use. Consult the manual or the

reference of your compiler for

more information on the possible

parameters that you can define

with #pragma.

M.EC203* -- OOP (C++) -- Lecture 14 20

Input/Output with files

• C++ has support both for input and output

with files through the following classes:

• ofstream: File class for writing operations

(derived from ostream)

• ifstream: File class for reading operations

(derived from istream)

• fstream: File class for both reading and

writing operations (derived from iostream)

M.EC203* -- OOP (C++) -- Lecture 14 21

Open a file

• The first operation generally done on

an object of one of these classes is to

associate it to a real file, that is to say,

to open a file. The open file is

represented within the program by a

stream object (an instantiation of one

of these classes) and any input or

output performed on this stream

object will be applied to the physical

file.

M.EC203* -- OOP (C++) -- Lecture 14 22

Continue

• In order to open a file with a stream

object we use its member function

open():

• void open (const char * filename,

openmode mode); where filename is

a string of characters representing the

name of the file to be opened and

mode is a combination of the

following flags:

M.EC203* -- OOP (C++) -- Lecture 14 23

Continue

M.EC203* -- OOP (C++) -- Lecture 14 24

Continue

• These flags can be combined using bitwise

operator OR: |. For example, if we want to open

the file "example.bin" in binary mode to add data

we could do it by the following call to function-

member open:

• ofstream file;

file.open ("example.bin", ios::out | ios::app |

ios::binary);

• All of the member functions open of classes

ofstream, ifstream and fstream include a

default mode when opening files that varies from

one to the other:

M.EC203* -- OOP (C++) -- Lecture 14 25

Continue

M.EC203* -- OOP (C++) -- Lecture 14 26

Continue

• The default value is only applied if the

function is called without specifying a

mode parameter. If the function is called

with any value in that parameter the

default mode is stepped on, not combined.

• Since the first task that is performed on an

object of classes ofstream, ifstream and

fstream is frequently to open a file, these

three classes include a constructor that

directly calls the open member function

and has the same parameters as this.

M.EC203* -- OOP (C++) -- Lecture 14 27

Continue

• This way, we could also have declared

the previous object and conducted the

same opening operation just by writing:

• ofstream file ("example.bin", ios::out |

ios::app | ios::binary);

• Both forms to open a file are valid.

• You can check if a file has been

correctly opened by calling the member

function

M.EC203* -- OOP (C++) -- Lecture 14 28

Continue

• is_open():

• bool is_open();

• that returns a bool type value

indicating true in case that indeed

the object has been correctly

associated with an open file or

false otherwise.

M.EC203* -- OOP (C++) -- Lecture 14 29

Closing a file

• When reading, writing or consulting

operations on a file are complete we

must close it so that it becomes

available again. In order to do that we

shall call the member function close(),

that is in charge of flushing the

buffers and closing the file. Its form is

quite simple:

• void close ();

M.EC203* -- OOP (C++) -- Lecture 14 30

Continue

• Once this member function is

called, the stream object can be

used to open another file, and the

file is available again to be opened

by other processes.

• In case that an object is destructed

while still associated with an open

file, the destructor automatically

calls the member function close.

M.EC203* -- OOP (C++) -- Lecture 14 31

Text mode files

• Classes ofstream, ifstream and fstream

are derived from ostream, istream and

iostream respectively. That's why fstream

objects can use the members of these

parent classes to access data.

• Generally, when using text files we shall

use the same members of these classes that

we used in communication with the

console (cin and cout). As in the following

example, where we use the overloaded

insertion operator <<:

M.EC203* -- OOP (C++) -- Lecture 14 32

Continue

M.EC203* -- OOP (C++) -- Lecture 14 33

Continue

• Data input from file can also be

performed in the same way that

we did with cin:

M.EC203* -- OOP (C++) -- Lecture 14 34

Continue

M.EC203* -- OOP (C++) -- Lecture 14 35

Continue

• This last example reads a text file

and prints out its content on the

screen. Notice how we have used

a new member function, called eof

that ifstream inherits from class

ios and that returns true in case

that the end of the file has been

reached.

M.EC203* -- OOP (C++) -- Lecture 14 36

Verification of state flags

• In addition to eof(), other member

functions exist to verify the state of the

stream (all of them return a bool value):

• bad()

• Returns true if a failure occurs in a

reading or writing operation. For example

in case we try to write to a file that is not

open for writing or if the device where we

try to write has no space left.

M.EC203* -- OOP (C++) -- Lecture 14 37

Continue

• fail()

• Returns true in the same cases as

bad() plus in case that a format error

happens, as trying to read an integer

number and an alphabetical character

is received.

• eof()

• Returns true if a file opened for

reading has reached the end.

M.EC203* -- OOP (C++) -- Lecture 14 38

Continue

• good()

• It is the most generic: returns false in

the same cases in which calling any of

the previous functions would return

true.

• In order to reset the state flags

checked by the previous member

functions you can use member

function clear(), with no parameters.

M.EC203* -- OOP (C++) -- Lecture 14 39

get and put stream pointers

• All i/o streams objects have, at least, one

stream pointer:

• ifstream, like istream, has a pointer

known as get pointer that points to the next

element to be read.

• ofstream, like ostream, has a pointer put

pointer that points to the location where

the next element has to be written.

• Finally fstream, like iostream, inherits

both: get and put

M.EC203* -- OOP (C++) -- Lecture 14 40

Continue

• These stream pointers that point to the reading or

writing locations within a stream can be read

and/or manipulated using the following member

functions:

• tellg() and tellp()

• These two member functions admit no

parameters and return a value of type pos_type

(according ANSI-C++ standard) that is an integer

data type representing the current position of get

stream pointer (in case of tellg) or put stream

pointer (in case of tellp).

M.EC203* -- OOP (C++) -- Lecture 14 41

Continue

• seekg() and seekp()

• This pair of functions serve respectively to

change the position of stream pointers get and

put. Both functions are overloaded with two

different prototypes:

• seekg (pos_type position);

seekp (pos_type position);

• Using this prototype the stream pointer is

changed to an absolute position from the

beginning of the file. The type required is the

same as that returned by functions tellg and tellp.

M.EC203* -- OOP (C++) -- Lecture 14 42

Continue

• seekg (off_type offset, seekdir

direction);

seekp (off_type offset, seekdir

direction);

• Using this prototype, an offset

from a concrete point determined

by parameter direction can be

specified. It can be:

M.EC203* -- OOP (C++) -- Lecture 14 43

Continue

The values of both stream pointers get

and put are counted in different ways

for text files than for binary files, since

in text mode files some modifications to

the appearance of some special

characters can occur.

M.EC203* -- OOP (C++) -- Lecture 14 44

Continue

• For that reason it is advisable to use only

the first prototype of seekg and seekp with

files opened in text mode and always use

non-modified values returned by tellg or

tellp. With binary files, you can freely use

all the implementations for these functions.

They should not have any unexpected

behavior.

• The following example uses the member

functions just seen to obtain the size of a

binary file:

M.EC203* -- OOP (C++) -- Lecture 14 45

Continue

M.EC203* -- OOP (C++) -- Lecture 14 46

Binary files

• In binary files inputting and outputting data with

operators like << and >> and functions like

getline, does not make too much sense, although

they are perfectly valid.

• File streams include two member functions

specially designed for input and output of data

sequentially: write and read. The first one

(write) is a member function of ostream, also

inherited by ofstream. And read is member

function of istream and it is inherited by

ifstream. Objects of class fstream have both.

M.EC203* -- OOP (C++) -- Lecture 14 47

Continue

• Their prototypes are:

• write (char * buffer, streamsize size);

read (char * buffer, streamsize size);

• Where buffer is the address of a memory

block where the read data are stored or

from where the data to be written are

taken. The size parameter is an integer

value that specifies the number of

characters to be read/written from/to the

buffer.

M.EC203* -- OOP (C++) -- Lecture 14 48

Continue

M.EC203* -- OOP (C++) -- Lecture 14 49

Continue

M.EC203* -- OOP (C++) -- Lecture 14 50

Have you questions?

M.EC203* -- OOP (C++) -- Lecture 14 51

Summary

• Preprocessor directives

• #define

• #undef

• #ifdef, #ifndef, #if, #endif, #else

and #elif

• Input/Output with files

M.EC203* -- OOP (C++) -- Lecture 14 52

End of…

Thank you for

ATTENTION

